1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
#![allow(unused)]
use std::collections::binary_heap::Iter;
use std::fs::File;
use std::io::{Write,BufRead, BufReader};
use rest_tensors::MatrixFull;
use rayon::str::Chars;
use regex::Regex;
use itertools::izip;
use tensors::MathMatrix;
use std::collections::HashMap;
use serde::{Deserialize,Serialize};
use serde_json::Value;
//use tensors::Tensors;

use crate::constants::{SPECIES_NAME,MASS_CHARGE,ANG,SPECIES_INFO};



//const SPECIES_INFO: HashMap<&str, &(f64, f64)> = 
//    (("H",(1.00794,1.0))).collect();



#[derive(Clone)]
pub struct GeomCell {
    pub name: String,
    pub elem: Vec<String>,
    pub fix:  Vec<bool>,
    pub unit: GeomUnit,
    //pub position: MatrixXx3<f64>, 
    pub position: MatrixFull<f64>, 
    pub lattice: MatrixFull<f64>,
    pub nfree: usize,
    pub pbc: MOrC,
    pub rest : Vec<(usize,String)>,
}

#[derive(Clone,Copy)]
pub enum MOrC {
    Molecule,
    Crystal,
}

#[derive(Clone,Copy)]
pub enum GeomUnit {
    Angstrom,
    Bohr,
}

pub enum EnergyUnit {
    Hartree,
    EV,
}

pub enum GeomType {
    Cartesian,
    Fraction,
}


pub fn formated_element_name(elem: &String) -> String {
    /// make sure the first letter of the element name is in uppercase.
    let mut tmp_elem = elem.to_lowercase();
    let mut c = tmp_elem.chars();
    match c.next() {
        None => String::new(),
        Some(f) => f.to_uppercase().collect::<String>() + c.as_str(),
    }
}


pub fn get_mass_charge(elem_list: &Vec<String>) -> Vec<(f64,f64)> {

    //let name_mass_charge: HashMap<&String,&(f64,f64)> = element_name.iter().zip(atomic_mass_charge.iter()).collect();
    //SPECIES_NAME.in
    //let name_mass_charge: HashMap<&str,&(f64,f64)> = SPECIES_NAME.iter().zip(MASS_CHARGE.iter())
    //.map(|(name,mc)| (*name,mc)).collect();

    let mut final_list: Vec<(f64,f64)> = vec![];

    for elem in elem_list {
        let formated_elem = formated_element_name(&elem);
        let tmp_result = SPECIES_INFO.get(formated_elem.as_str());
        if let Some(tmp_value) = tmp_result {
            final_list.push(**tmp_value);
        } else {
            panic!("Specify unknown element: {}. Please check the input file", elem);
        }
    }

    final_list
}

impl GeomCell {
    pub fn new() -> GeomCell {
        GeomCell{
            name            : String::from("a molecule"),
            nfree           : 0,
            elem            : vec![], 
            fix             : vec![],
            unit            : GeomUnit::Angstrom,
            //position        : Tensors::new('F',vec![3,1],0.0f64),
            //lattice         : Tensors::new('F',vec![3,1],0.0f64),
            position        : MatrixFull::empty(),
            lattice         : MatrixFull::empty(),
            pbc             : MOrC::Molecule,
            rest            : vec![],
        }
    }
    pub fn copy(&mut self, name:String) -> GeomCell {
        let mut new_mol = GeomCell::new();
        new_mol.name = name;
        new_mol.nfree = self.nfree;
        new_mol.unit = self.unit;
        new_mol.position = self.position.to_owned();
        new_mol.lattice = self.lattice.to_owned();
        new_mol.pbc = match &self.pbc {
            MOrC::Crystal => MOrC::Crystal,
            MOrC::Molecule => MOrC::Molecule,
        };
        new_mol.rest = self.rest.to_owned();
        for (elem,fix) in izip!(&mut self.elem, &mut self.fix) {
            new_mol.elem.push(elem.to_string());
            new_mol.fix.push(*fix);
        }
        new_mol
    }
    pub fn get_nfree(&self) -> anyhow::Result<usize> {
        Ok(self.nfree)
    }
    pub fn get_elem(&self, index_a:usize) -> anyhow::Result<String> {
        Ok(self.elem[index_a].to_owned())
    }
    pub fn get_elems_iter(&mut self) ->  std::slice::Iter<'_, std::string::String> {
        self.elem.iter()
    }
    pub fn calc_nuc_energy(&mut self) -> f64 {
        let mass_charge = get_mass_charge(&self.elem);
        let mut nuc_energy = 0.0;
        //(0..self.elem.len()).into_iter().for_each(|i| {
        //    let i_charge =  mass_charge[i].1;
        //    let mut i_position = self.position.get_reducing_tensor(i).unwrap();
        //    (0..i).into_iter().for_each(|j| {
        //        let j_charge =  mass_charge[j].1;
        //        let j_position = self.position.get_reducing_tensor(j).unwrap();
        //        let mut dd = (i_position.clone() - j_position).abs();
        //        //println!("Debug {}={},{}={},{}",i, i_charge, j, j_charge, dd);
        //        nuc_energy += i_charge*j_charge/dd;
        //    });
        //});
        let tmp_range1 = (0..self.position.size[1]);
        self.position.iter_columns(tmp_range1).enumerate().for_each(|(i,ri)| {
            let i_charge = mass_charge[i].1;
            let tmp_range2 = (0..i);
            self.position.iter_columns(tmp_range2).enumerate().for_each(|(j,rj)| {
                let j_charge = mass_charge[j].1;
                let dd = ri.iter().zip(rj.iter())
                    .fold(0.0,|acc,(ri,rj)| acc + (ri-rj).powf(2.0)).sqrt();
                nuc_energy += i_charge*j_charge/dd;
            });
        });

        println!("Nuc_energy: {}",nuc_energy);
        
        nuc_energy
    }
    //pub fn get_elems_(&mut self,Vec<T>) ->  std::iter::Enumerate<std::slice::Iter<'_, std::string::String>> {
    //    self.elem.iter().enumerate()
    //}
    pub fn get_fix(&self, index_a:usize) -> anyhow::Result<bool> {
        Ok(self.fix[index_a])
    }
    pub fn get_relax_index(&self, index_a:usize) -> anyhow::Result<usize> {
        let mut gi:usize = 0;
        let mut ci:usize = 0;
        while ci <= index_a {
            if !self.fix[gi] {ci += 1};
            gi += 1;
        }
        Ok(gi-1)
    }

    pub fn parse_position(position:&Vec<Value>,unit:&GeomUnit) -> anyhow::Result<(Vec<String>,Vec<bool>,MatrixFull<f64>,usize)> {
        // re0: the standard Cartesian position format with or without ',' as seperator
        //      no fix atom information
        let re0 = Regex::new(r"(?x)\s*
                            (?P<elem>\w{1,2})\s*,?    # the element
                            \s+
                            (?P<x>[\+-]?\d+.\d+)\s*,? # the 'x' position
                            \s+
                            (?P<y>[\+-]?\d+.\d+)\s*,? # the 'y' position
                            \s+
                            (?P<z>[\+-]?\d+.\d+)\s*,? # the 'z' position
                            \s*").unwrap();
        // re1: the standard Cartesian position format with or without ',' as seperator
        //      info. of fix atom is specified following the element name
        let re1 = Regex::new(r"(?x)\s*
                            (?P<elem>\w{1,2})\s*,?    # the element
                            \s+
                            (?P<fix>\d)\s*,? # 1 for geometry relazation; 0 for fix
                            \s+
                            (?P<x>[\+-]?\d+.\d+)\s*,? # the 'x' position
                            \s+
                            (?P<y>[\+-]?\d+.\d+)\s*,? # the 'y' position
                            \s+
                            (?P<z>[\+-]?\d+.\d+)\s*,? # the 'z' position
                            \s*").unwrap();
        let mut tmp_nfree:usize = 0;
        let mut tmp_ele: Vec<String> = vec![];
        let mut tmp_fix: Vec<bool> = vec![];
        let mut tmp_pos: Vec<f64> = vec![];
        for line in position {
            let tmpp = match line {
                Value::String(tmp_str)=>{tmp_str.clone()},
                other => {String::from("none")}
            };
            if let Some(cap) = re0.captures(&tmpp) {
                tmp_ele.push(cap[1].to_string());
                tmp_pos.push(cap[2].parse().unwrap());
                tmp_pos.push(cap[3].parse().unwrap());
                tmp_pos.push(cap[4].parse().unwrap());
                tmp_fix.push(false);
                tmp_nfree += 1;
            } else if let Some(cap) = re1.captures(&tmpp) {
                tmp_ele.push(cap[1].to_string());
                tmp_pos.push(cap[3].parse().unwrap());
                tmp_pos.push(cap[4].parse().unwrap());
                tmp_pos.push(cap[5].parse().unwrap());
                let tmp_num: i32 = cap[2].parse().unwrap();
                if tmp_num==0 {
                    tmp_fix.push(true);
                } else {
                    tmp_fix.push(false);
                    tmp_nfree += 1;
                }
            } else {
                panic!("Error: unknown geometry format: {}", &tmpp);
            }
        }
        let tmp_size: [usize;2] = [3,tmp_pos.len()/3];
        let mut tmp_pos_tensor = MatrixFull::from_vec(tmp_size, tmp_pos).unwrap();
        if let GeomUnit::Angstrom = unit {
            // To store the geometry position in "Bohr" according to the convention of quantum chemistry. 
            tmp_pos_tensor.self_multiple(ANG.powf(-1.0));
        };
        Ok((tmp_ele, tmp_fix, tmp_pos_tensor, tmp_nfree))
    }

    pub fn parse_lattice(lattice:&Vec<Value>, unit: &GeomUnit) -> anyhow::Result<MatrixFull<f64>> {
        //
        // re2: the standard Cartesian position format with or without ',' as seperator
        //
        let re2 = Regex::new(r"(?x)\s*
                            (?P<x>[\+-]?\d+.\d+)\s*,? # the 'x' position
                            \s+
                            (?P<y>[\+-]?\d+.\d+)\s*,? # the 'y' position
                            \s+
                            (?P<z>[\+-]?\d+.\d+)\s*,? # the 'z' position
                            \s*").unwrap();
        
        let mut tmp_vec: Vec<f64> = vec![];
        for line in lattice {
            let tmpp = match line {
                Value::String(tmp_str)=>{tmp_str.clone()},
                other => {String::from("none")}
            };
            if let Some(cap) = re2.captures(&tmpp) {
                tmp_vec.push(cap[1].parse().unwrap());
                tmp_vec.push(cap[2].parse().unwrap());
                tmp_vec.push(cap[3].parse().unwrap());
            } else {
                panic!("Error in reading the lattice constant: {}", &tmpp);
            }
        }
        let mut tmp_lat = unsafe{MatrixFull::from_vec_unchecked([3,3],tmp_vec)};
        if let GeomUnit::Angstrom = unit {
            // To store the lattice vector in "Bohr" according to the convention of quantum chemistry. 
            tmp_lat.self_multiple(ANG.powf(-1.0));
        };
        Ok(tmp_lat)
        //if frac_bool {
        //    new_geom.position = &new_geom.lattice * new_geom.position
        //}; 
    }
    pub fn to_numgrid_io(&self) -> Vec<(f64,f64,f64)> {
        let mut tmp_vec: Vec<(f64,f64,f64)> = vec![];
        self.position.data.chunks_exact(3).for_each(|value| {
            tmp_vec.push((value[0],value[1],value[2]))
        });
        tmp_vec
    }
}