1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
//use fdqc_tensors::{MatrixFullSlice};
use super::parameters::{SG1RADII, BOHR, BRAGG0, LEBEDEV_NGRID};
//use crate::sap::radi;
//use std::ops::Div;
pub fn sg1_prune (nuc: usize, rads: &Vec<f64>, n_rad: usize) -> Vec<usize>{
//SG1, CPL, 209, 506
/*
nuc : usize
Nuclear charge.
rads : 1D Vector
Grid coordinates on radical axis.
MatrixFull struct, size = [xxxxxx, 1]
# In SG1 the ang grids for the five regions
#6 38 86 194 86
*/
/*
let SG1RADII: Vec<f64> = vec![0.0, 1.0000, 0.5882, //H, He
3.0769, 2.0513, 1.5385, 1.2308, 1.0256, 0.8791, 0.7692, 0.6838, //2nd Period
4.0909, 3.1579, 2.5714, 2.1687, 1.8750, 1.6514, 1.4754, 1.3333]; //3rd Period
*/
let radii = &SG1RADII; //for elements before 4rd period
let leb_ngrid = vec![6, 38, 86, 194, 86];
let alphas = [[0.25, 0.5, 1.0, 4.5], [0.1667, 0.5, 0.9, 3.5], [0.1, 0.4, 0.8, 2.5]];
let r_atom = radii[nuc];
let mut place = vec![0usize; n_rad];
if nuc < 2 { //H, He
place.iter_mut().zip(rads.iter()).for_each(|(place,rad)| {
let mut judge = 0usize;
alphas.get(0).unwrap().iter().for_each(|alpha| {
if rad/r_atom > *alpha {
judge = judge + 1;
}
});
*place = leb_ngrid[judge];
});
}
else if nuc > 2 && nuc <= 10 { // 2nd period
place.iter_mut().zip(rads.iter()).for_each(|(place,rad)| {
let mut judge = 0usize;
alphas.get(1).unwrap().iter().for_each(|alpha| {
if rad/r_atom > *alpha {
judge = judge + 1;
}
});
*place = leb_ngrid[judge];
});
}
else { // 3nd period
place.iter_mut().zip(rads.iter()).for_each(|(place,rad)| {
let mut judge = 0usize;
alphas.get(1).unwrap().iter().for_each(|alpha| {
if rad/r_atom > *alpha {
judge = judge + 1;
}
});
*place = leb_ngrid[judge];
});
}
place
}
pub fn nwchem_prune(nuc: usize, rads: &Vec<f64>, n_ang: usize, n_rad: usize) -> Vec<usize> {
/* '''NWChem
Args:
nuc : int
Nuclear charge.
rads : 1D array
Grid coordinates on radical axis.
n_ang : int
Max number of grids over angular part.
Kwargs:
radii : 1D array
radii (in Bohr) for atoms in periodic table
Returns:
A list has the same length as rads. The list element is the number of
grids over angular part for each radial grid.
'''
*/
//let BOHR = 0.52917721092; // Angstroms
/*
let BRAGG0 = vec![0.0, // Ghost atom
0.35, 1.40, // 1s
1.45, 1.05, 0.85, 0.70, 0.65, 0.60, 0.50, 1.50, // 2s2p
1.80, 1.50, 1.25, 1.10, 1.00, 1.00, 1.00, 1.80, // 3s3p
2.20, 1.80, // 4s
1.60, 1.40, 1.35, 1.40, 1.40, 1.40, 1.35, 1.35, 1.35, 1.35, // 3d
1.30, 1.25, 1.15, 1.15, 1.15, 1.90, // 4p
2.35, 2.00, // 5s
1.80, 1.55, 1.45, 1.45, 1.35, 1.30, 1.35, 1.40, 1.60, 1.55, // 4d
1.55, 1.45, 1.45, 1.40, 1.40, 2.10, // 5p
2.60, 2.15, // 6s
1.95, 1.85, 1.85, 1.85, 1.85, 1.85, 1.85, // La, Ce-Eu
1.80, 1.75, 1.75, 1.75, 1.75, 1.75, 1.75, 1.75, // Gd, Tb-Lu
1.55, 1.45, 1.35, 1.35, 1.30, 1.35, 1.35, 1.35, 1.50, // 5d
1.90, 1.80, 1.60, 1.90, 1.45, 2.10, // 6p
1.80, 2.15, // 7s
1.95, 1.80, 1.80, 1.75, 1.75, 1.75, 1.75,
1.75, 1.75, 1.75, 1.75, 1.75, 1.75, 1.75,
1.75, 1.75, 1.75, 1.75, 1.75, 1.75, 1.75, 1.75, 1.75, 1.75,
1.75, 1.75, 1.75, 1.75, 1.75, 1.75,
1.75, 1.75,
1.75, 1.75, 1.75, 1.75, 1.75, 1.75, 1.75, 1.75, 1.75, 1.75];
*/
let bragg: Vec<f64> = BRAGG0.iter().map(|item| *item/BOHR).collect();
/*
let LEBEDEV_NGRID = vec![1, 6, 14, 26, 38, 50, 74, 86, 110, 146, 170,
194, 230, 266, 302, 350, 434, 590, 770, 974, 1202, 1454,
1730, 2030, 2354, 2702, 3074, 3470, 3890, 4334, 4802, 5294, 5810];
*/
//let leb_ngrid = &LEBEDEV_NGRID[4..];
let leb_ngrid = &LEBEDEV_NGRID[4..];
//println!("leb_ngrid = {:?}", leb_ngrid);
let alphas = [[0.25, 0.5, 1.0, 4.5], [0.1667, 0.5, 0.9, 3.5], [0.1, 0.4, 0.8, 2.5]];
let radii = &bragg;
/*
let n_ang =
if LEBEDEV_NGRID.contains(&n_ang_input) {
n_ang_input
}
else {
let ang_num_new = get_closest_n_ang(n_ang_input);
println!("Angular grid number not in Lebedev list, thus use {} as angular grid number.", ang_num_new);
ang_num_new
};
*/
if n_ang < 50 {
return vec![n_ang; n_rad]
}
let leb_l = if n_ang == 50 {
vec![1, 2, 2, 2, 1]
}
else {
let mut idx = 0;
for leb_grid in leb_ngrid.iter(){
if n_ang == *leb_grid {
break;
}
idx += 1;
}
vec![1, 3, idx-1, idx, idx-1]
};
let mut place = vec![0usize; n_rad];
let r_atom = radii[nuc] + 1e-200;
if nuc < 2 { //H, He
place.iter_mut().zip(rads.iter()).for_each(|(place,rad)| {
let mut judge = 0usize;
alphas.get(0).unwrap().iter().for_each(|alpha| {
if rad/r_atom > *alpha {
judge = judge + 1;
}
});
*place = leb_l[judge];
});
}
else if nuc > 2 && nuc <= 10 { // 2nd period
place.iter_mut().zip(rads.iter()).for_each(|(place,rad)| {
let mut judge = 0usize;
alphas.get(1).unwrap().iter().for_each(|alpha| {
if rad/r_atom > *alpha {
judge = judge + 1;
}
});
*place = leb_l[judge];
});
}
else { // 3nd period
place.iter_mut().zip(rads.iter()).for_each(|(place,rad)| {
let mut judge = 0usize;
alphas.get(2).unwrap().iter().for_each(|alpha| {
if rad/r_atom > *alpha {
judge = judge + 1;
}
});
*place = leb_l[judge];
});
}
let mut angs = vec![];
for item in place.iter() {
angs.push(leb_ngrid[*item])
}
//println!("The angular array is {:?}", angs);
//println!("The radial grid is {:?}", rads);
angs
}
/*
def nwchem_prune(nuc, rads, n_ang, radii=radi.BRAGG_RADII):
'''NWChem
Args:
nuc : int
Nuclear charge.
rads : 1D array
Grid coordinates on radical axis.
n_ang : int
Max number of grids over angular part.
Kwargs:
radii : 1D array
radii (in Bohr) for atoms in periodic table
Returns:
A list has the same length as rads. The list element is the number of
grids over angular part for each radial grid.
'''
alphas = numpy.array((
(0.25 , 0.5, 1.0, 4.5),
(0.1667, 0.5, 0.9, 3.5),
(0.1 , 0.4, 0.8, 2.5)))
leb_ngrid = LEBEDEV_NGRID[4:] # [38, 50, 74, 86, ...]
if n_ang < 50:
return numpy.repeat(n_ang, len(rads))
elif n_ang == 50:
leb_l = numpy.array([1, 2, 2, 2, 1])
else:
idx = numpy.where(leb_ngrid==n_ang)[0][0]
leb_l = numpy.array([1, 3, idx-1, idx, idx-1])
r_atom = radii[nuc] + 1e-200
if nuc <= 2: # H, He
place = ((rads/r_atom).reshape(-1,1) > alphas[0]).sum(axis=1)
elif nuc <= 10: # Li - Ne
place = ((rads/r_atom).reshape(-1,1) > alphas[1]).sum(axis=1)
else:
place = ((rads/r_atom).reshape(-1,1) > alphas[2]).sum(axis=1)
angs = leb_l[place]
angs = leb_ngrid[angs]
return angs
*/