1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
//use fdqc_tensors::{MatrixFullSlice};
use super::parameters::{SG1RADII, BOHR, BRAGG0, LEBEDEV_NGRID};

//use crate::sap::radi;
//use std::ops::Div;


pub fn sg1_prune (nuc: usize, rads: &Vec<f64>, n_rad: usize) -> Vec<usize>{
    //SG1, CPL, 209, 506
/*
         nuc : usize
            Nuclear charge.

        rads : 1D Vector
            Grid coordinates on radical axis.
            MatrixFull struct, size = [xxxxxx, 1]

# In SG1 the ang grids for the five regions
#6  38 86  194 86
 */ 

 /* 
     let SG1RADII: Vec<f64> = vec![0.0, 1.0000, 0.5882,   //H, He
    3.0769, 2.0513, 1.5385, 1.2308, 1.0256, 0.8791, 0.7692, 0.6838,  //2nd Period
    4.0909, 3.1579, 2.5714, 2.1687, 1.8750, 1.6514, 1.4754, 1.3333];  //3rd Period
  */
 
    let radii = &SG1RADII; //for elements before 4rd period
    let leb_ngrid = vec![6, 38, 86, 194, 86];
    let alphas = [[0.25, 0.5, 1.0, 4.5], [0.1667, 0.5, 0.9, 3.5], [0.1, 0.4, 0.8, 2.5]];
    let r_atom = radii[nuc];
    let mut place = vec![0usize; n_rad];

    if nuc < 2 {  //H, He
        place.iter_mut().zip(rads.iter()).for_each(|(place,rad)| {
            let mut judge = 0usize;
            alphas.get(0).unwrap().iter().for_each(|alpha| {
                if rad/r_atom > *alpha {
                    judge = judge + 1;
                }
            });
            *place = leb_ngrid[judge];
        });
    }
    else if nuc > 2 && nuc <= 10 {  // 2nd period
        place.iter_mut().zip(rads.iter()).for_each(|(place,rad)| {
            let mut judge = 0usize;
            alphas.get(1).unwrap().iter().for_each(|alpha| {
                if rad/r_atom > *alpha {
                    judge = judge + 1;
                }
            });
            *place = leb_ngrid[judge];
        });
    }
    else {  // 3nd period
        place.iter_mut().zip(rads.iter()).for_each(|(place,rad)| {
            let mut judge = 0usize;
            alphas.get(1).unwrap().iter().for_each(|alpha| {
                if rad/r_atom > *alpha {
                    judge = judge + 1;
                }
            });
            *place = leb_ngrid[judge];
        });
    }

    place


}

pub fn nwchem_prune(nuc: usize, rads: &Vec<f64>, n_ang: usize, n_rad: usize) -> Vec<usize> {
    /*     '''NWChem

    Args:
        nuc : int
            Nuclear charge.

        rads : 1D array
            Grid coordinates on radical axis.

        n_ang : int
            Max number of grids over angular part.

    Kwargs:
        radii : 1D array
            radii (in Bohr) for atoms in periodic table

    Returns:
        A list has the same length as rads. The list element is the number of
        grids over angular part for each radial grid.
    '''
     */
    //let BOHR = 0.52917721092;  // Angstroms

    /* 
    let BRAGG0 = vec![0.0,  // Ghost atom
    0.35,                                     1.40,             // 1s
    1.45, 1.05, 0.85, 0.70, 0.65, 0.60, 0.50, 1.50,             // 2s2p
    1.80, 1.50, 1.25, 1.10, 1.00, 1.00, 1.00, 1.80,             // 3s3p
    2.20, 1.80,                                                 // 4s
    1.60, 1.40, 1.35, 1.40, 1.40, 1.40, 1.35, 1.35, 1.35, 1.35, // 3d
                1.30, 1.25, 1.15, 1.15, 1.15, 1.90,             // 4p
    2.35, 2.00,                                                 // 5s
    1.80, 1.55, 1.45, 1.45, 1.35, 1.30, 1.35, 1.40, 1.60, 1.55, // 4d
                1.55, 1.45, 1.45, 1.40, 1.40, 2.10,             // 5p
    2.60, 2.15,                                                 // 6s
    1.95, 1.85, 1.85, 1.85, 1.85, 1.85, 1.85,                   // La, Ce-Eu
    1.80, 1.75, 1.75, 1.75, 1.75, 1.75, 1.75, 1.75,             // Gd, Tb-Lu
          1.55, 1.45, 1.35, 1.35, 1.30, 1.35, 1.35, 1.35, 1.50, // 5d
                1.90, 1.80, 1.60, 1.90, 1.45, 2.10,             // 6p
    1.80, 2.15,                                                 // 7s
    1.95, 1.80, 1.80, 1.75, 1.75, 1.75, 1.75,
    1.75, 1.75, 1.75, 1.75, 1.75, 1.75, 1.75,
    1.75, 1.75, 1.75, 1.75, 1.75, 1.75, 1.75, 1.75, 1.75, 1.75,
                1.75, 1.75, 1.75, 1.75, 1.75, 1.75,
    1.75, 1.75,
    1.75, 1.75, 1.75, 1.75, 1.75, 1.75, 1.75, 1.75, 1.75, 1.75];
    */

    let bragg: Vec<f64> = BRAGG0.iter().map(|item| *item/BOHR).collect();
    /* 
    let LEBEDEV_NGRID = vec![1, 6, 14, 26, 38, 50, 74, 86, 110, 146, 170,
    194,  230,  266,  302,  350,  434,  590,  770,  974, 1202, 1454,
    1730, 2030, 2354, 2702, 3074, 3470, 3890, 4334, 4802, 5294, 5810];
    */

    //let leb_ngrid = &LEBEDEV_NGRID[4..];
    let leb_ngrid = &LEBEDEV_NGRID[4..];
    //println!("leb_ngrid = {:?}", leb_ngrid);

    let alphas = [[0.25, 0.5, 1.0, 4.5], [0.1667, 0.5, 0.9, 3.5], [0.1, 0.4, 0.8, 2.5]];
    let radii = &bragg;

/*     
    let n_ang =    
    if LEBEDEV_NGRID.contains(&n_ang_input) {
        n_ang_input
    }
    else {
        let ang_num_new = get_closest_n_ang(n_ang_input);
        println!("Angular grid number not in Lebedev list, thus use {} as angular grid number.", ang_num_new);
        ang_num_new
    };
 */
    if n_ang < 50 {
        return vec![n_ang; n_rad]
    }

    let leb_l = if n_ang == 50 {
        vec![1, 2, 2, 2, 1]
    }
    else {
        let mut idx = 0;
        for leb_grid in leb_ngrid.iter(){
            if n_ang == *leb_grid {
                break;
            }
            idx += 1;
        }
        vec![1, 3, idx-1, idx, idx-1]
    };

    let mut place = vec![0usize; n_rad];
    let r_atom = radii[nuc] + 1e-200;
    if nuc < 2 {  //H, He
        place.iter_mut().zip(rads.iter()).for_each(|(place,rad)| {
            let mut judge = 0usize;
            alphas.get(0).unwrap().iter().for_each(|alpha| {
                if rad/r_atom > *alpha {
                    judge = judge + 1;
                }
            });
        *place = leb_l[judge];
        });
    }
    else if nuc > 2 && nuc <= 10 {  // 2nd period
        place.iter_mut().zip(rads.iter()).for_each(|(place,rad)| {
            let mut judge = 0usize;
            alphas.get(1).unwrap().iter().for_each(|alpha| {
                if rad/r_atom > *alpha {
                        judge = judge + 1;
                }
            });
            *place = leb_l[judge];
        });
    }
    else {  // 3nd period
        place.iter_mut().zip(rads.iter()).for_each(|(place,rad)| {
            let mut judge = 0usize;
            alphas.get(2).unwrap().iter().for_each(|alpha| {
                if rad/r_atom > *alpha {
                    judge = judge + 1;
                }
            });
            *place = leb_l[judge];
        });
    }

    let mut angs = vec![];
    for item in place.iter() { 
        angs.push(leb_ngrid[*item])
    }

    //println!("The angular array is {:?}", angs);
    //println!("The radial grid is {:?}", rads);
    angs

}

/* 
def nwchem_prune(nuc, rads, n_ang, radii=radi.BRAGG_RADII):
    '''NWChem

    Args:
        nuc : int
            Nuclear charge.

        rads : 1D array
            Grid coordinates on radical axis.

        n_ang : int
            Max number of grids over angular part.

    Kwargs:
        radii : 1D array
            radii (in Bohr) for atoms in periodic table

    Returns:
        A list has the same length as rads. The list element is the number of
        grids over angular part for each radial grid.
    '''
    alphas = numpy.array((
        (0.25  , 0.5, 1.0, 4.5),
        (0.1667, 0.5, 0.9, 3.5),
        (0.1   , 0.4, 0.8, 2.5)))
    leb_ngrid = LEBEDEV_NGRID[4:]  # [38, 50, 74, 86, ...]
    if n_ang < 50:
        return numpy.repeat(n_ang, len(rads))
    elif n_ang == 50:
        leb_l = numpy.array([1, 2, 2, 2, 1])
    else:
        idx = numpy.where(leb_ngrid==n_ang)[0][0]
        leb_l = numpy.array([1, 3, idx-1, idx, idx-1])

    r_atom = radii[nuc] + 1e-200
    if nuc <= 2:  # H, He
        place = ((rads/r_atom).reshape(-1,1) > alphas[0]).sum(axis=1)
    elif nuc <= 10:  # Li - Ne
        place = ((rads/r_atom).reshape(-1,1) > alphas[1]).sum(axis=1)
    else:
        place = ((rads/r_atom).reshape(-1,1) > alphas[2]).sum(axis=1)
    angs = leb_l[place]
    angs = leb_ngrid[angs]
    return angs

*/